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Canonical solution of the state labelling problem for 
SU(n) 3 SO@) and Littlewood’s branching rule: 
I. General formulation 

J Deenen and C Quesne: 
Service de Physique Thiorique e t  Mathematique C P  229, Universite Libre de Bruxelles, 
Bd du Triomphe, B 1050 Brussels, Belgium 

Received 9 December 1982 

Abstract. The internal state labelling problem for the d-row irreducible representations 
of SU(n)  (where 2 d c n ) ,  when reduced with respect to SO(n), is shown to amount to 
the external state labelling problem for U(d). The canonical solution of the latter due to 
Biedenharn er a /  provides a canonical solution of the former, which reflects the operation 
of Littlewood’s branching rule for U(n) 3 O(n)  in a very simple way. 

1. introduction 

The usefulness of the group chain SU(n) 3 SO(n) in applications of group theory to 
both atomic and nuclear spectroscopy has been appreciated for a long time (Racah 
1949, Elliott 1958, Moshinsky 1967, Wybourne 1970). Unfortunately it turns out 
that the SO(n)  subgroup does not provide quantum numbers enough to specify 
completely the states transforming under an irreducible representation (irrep) of 
SU(n): this is the so-called state labelling problem for SU(n) 3 SO(n). 

The prototype of such a labelling problem is that arising for the chain SU(3)3  
SO(3). Since the pioneering work of Elliott (1958), Bargmann and Moshinsky (1961) 
and Racah (1964), several different methods have been proposed to resolve this 
difficulty, and they can be divided into two classes (see e.g. Moshinsky er a1 1975). 
The first type of solution uses as bases the common eigenstates of a complete set of 
commuting Hermitian operators. Besides the Casimir operators of group and sub- 
group, the latter contains an additional missing label operator. Its eigenvalues provide 
the missing label for the state vectors. They are not integer numbers but the corres- 
ponding basis states are orthonormal. The other type of solution leads to an integer 
additional label associated with analytic, but non-orthogonal, basis states. The latter 
are not the eigenstates of any complete set of commuting operators. 

Among the second of the above approaches, the method of elementary permissible 
diagrams (Moshinsky and Syamala Devi 1969)--or the equivalent method of elemen- 
tary multiplets (Sharp and Lam 1969)-plays an important part because it  is based 
upon Littlewood’s theorem (1950) for the reduction of an irrep of U(3) into irreducible 
parts with respect to O(3). The basis states corresponding to given irreps of SU(3) 
and S0(3), and of highest weight with respect to the latter group, are factorised into 
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a product of powers of a finite number of similar basis states associated with some 
low-dimensional irreps of SU(3) and SO(3) (characterised by the so-called elementary 
permissible diagrams). The power of one of these elementary basis states provides 
the missing label. 

The generalisation of this method to other group chains, although clear in principle, 
is rather hard to perform because the number of elementary permissible diagrams 
tremendously increases with the rank of the Lie algebras involved. In the case of the 
SU(n) 2 SO(n)  chain, the application of this method has been restricted, as far as we 
know, to irreps of U(n)  which have no more than three rows (Syamala Devi 1970). 

The purpose of the present series of papers is to propose a new solution to the 
state labelling problem for SU(n) 1 SO(n) ,  which reflects the operation of Littlewood’s 
branching rule in a much simpler way than the method of elementary permissible 
diagrams while remaining free of such practical limitations. The present paper is 
concerned with the general formulation of the method. For this purpose, we shall 
restrict ourselves to the case where the number of rows d of the Young diagram 
characterising the SU(n) irrep does not exceed v = [n/2], i.e. the largest integer 
contained in n/2. When this condition is fulfilled, Littlewood’s branching rule directly 
applies without need to supplement it with Newell’s modification rules (1951). The 
way the latter can be included in the present picture for SU(n) irreps for which 
d > [n/2] will be dealt with in a forthcoming paper. 

In S; 2, we establish the equivalence between the state labelling problems for the 
complementary chains U(n)  1 O ( n )  and Sp(2d, I?) 2 U(d) when d-row irreps of U(n) 
are considered. In 9: 3,  we construct the highest weight states of equivalent O ( n )  irreps 
in a Bargmann space of analytic functions in dn complex variables. In  9: 4, we determine 
from them the highest weight states of equivalent O ( n )  irreps belonging to a given 
U(n)  irrep, thereby solving the state labelling problem for U(n)  3 O ( n ) ,  or SU(n) 2 

SO(n ). Section 5 contains some concluding remarks. 

2. The state labelling problems for U(n) ZJ O ( n )  and Sp(24 R) 2 U(d) 

In the present paper, we shall discuss the state labelling problem for the d-row irreps 
of SU(n) (where 2d s n ) ,  when reduced with respect to SO(n) ,  in terms of the chain 

U(n) =I O(n) .  (2.1) 

As is well known (Wybourne 1970), the irreps [ h l h 2  . . . hd] of U(n)  remain irreducible 
under SU(n) and are characterised by the same partition; the same is true for the 
irreps ( A I A 2 .  . . A d )  of O ( n )  when reduced with respect to SO(n ), except when n = 2v, 
d = Y, and A,  > 0, in which case 

( A 1 A 2 . .  . A,-lh,)+(AlAz. . . A u - i A v ) + ( A i A 2 . .  . A,-1 - A ” ) .  (2.2) 

Littlewood’s branching theorem (1950) for chain (2.1) states that if in the reduction 
to irreps of U(n), the product representation [ A I A z . .  . A d ] X  [hfhi . .  . hk]  contains 
[ h l h 2  . . . h d ]  a certain number of times, which we denote by g [ A , h z  A . i ] [ h ; h ;  h a ] [ h , h 2  h d ] ,  

then the irrep [ h l h 2 . .  . h d ]  of U(n)  breaks into irreps ( A l A 2 . .  . A d )  of O ( n )  according 
to 
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P(Z,,) = Z , ?  c 

the summation in brackets being over all partitions that characterise the irreps of 
U(n )  of the type [ h i h i . ,  . h i ]  with h i , .  . . , h i  even integers. Littlewood's theorem 
may be used for any d value such that d s n. However, when 2d > n, ( A I  . . . A d )  is a 
non-standard symbol of O ( n )  and has to be converted into a standard one by using 
Newell's modification rules (1951). This difficulty will not arise in the present paper 
since we restrict ourselves to d values such that 2d S n. 

Let us consider the highest weight state (HWS) P of one of the equivalent O ( n )  
irreps characterised by ( A l  . . . A d )  and contained in the irrep [h l  . . . h d ]  of U(n).  This 
HWS can be built (Moshinsky 1963) as a polynomial in dn boson creation operators 
vis (where i = 1,2,  . . . , d, and s = 1,2, . . . , n ) .  We shall use Bargmann's representation 
(1961), wherein the creation operators qIs are represented by some complex variables 
zCsr and the corresponding annihilation operators tis by a/az,,. In such a representation, 
the generators of the U(n)  and O ( n )  groups are given by 

(2.9) 
(Ad + n / 2 , .  . . , A I + n / 2 )  [ h i .  . . h d ]  

(I")[hl . . . h d ]  ; ( r s ) ( h l  . . . 
max max 

(2.4) 

and 

.Isr = -iCCs, - C,,), (2.5) 

respectively. 

chain 
The construction of the HWS P ( z , , )  is most easily discussed in terms of the group 

where U(d) is generated by the operators 

and Sp(2d, R )  by 
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contained in a given irrep of Sp(2d, R ) .  At this point it is important to realise that 
due to the complementarity relationship between chains (2.1) and (2.6), the set (r’) 
also provides us with the d (d - 1)/2 missing labels characterising the equivalent irreps 
of O ( n )  contained in a given d-row irrep of U(n). We shall now proceed to show 
how an explicit construction of P(zi,)  leads to a canonical definition of (r’). 

For such a purpose, let us consider the weight and raising generators of U(d) and 
O(n) .  For the former group, they are the operators C,, and Cii, i< j ,  respectively. 
For the latter, following Wong’s notation (1967), they are given by 

where a and P run from 1 to v = [n/2]. 

of the following system of first-order differential equations: 
The polynomials P(z i s )  of (2.9), corresponding to all possible sets (I?), are solutions 

H,P = AaP, AEP=O,P<a,  (2.11a,b) 

D!P=O,P<a,  (2.11c,d) 

CiiP = hip, Ci,P = 0,  i < j ,  (2.12a,b) 

EZP = 0 (only when n = 2v + l), 

where A d t l  = . . . = A, = 0. The usual procedure to solve such a system of equations 
(see e.g. Bargmann and Moshinsky 1961) consists in considering (2.12) first and (2.11) 
afterwards, i.e. in looking among all the polynomials P(zi , )  belonging to a given U(n)  
irrep for those which also belong to a given O ( n )  irrep and are of highest weight with 
respect to O(n) .  In the present paper, we shall reverse this procedure and solve (2.11) 
first, then (2.12). This means that among all the polynomials P(zi,) belonging to a 
given Sp(2d, I?) irrep we look for those which also belong to a given U(d)  irrep and 
are of highest weight with respect to U(d).  The method followed here would therefore 
be the usual procedure for the complementary chain (2.6). 

3. Highest weight states of equivalent O(n) irreps 

Before solving the system of equations (2.11), it is advantageous to simplify it by 
making some appropriate changes of variables. First we note that the dn variables 
zis do not have a definite weight with respect to O(n) .  In analogy with the spherical 
coordinates in three dimensions, we are led to define the linear combinations 

where i runs from 1 to d and a from 1 to v. The new variables aim, bi, and ci have 
a definite weight with respect to O(n) ,  respectively equal to ( 0 , .  . . , 0 ,  l ,O, . , , ,0),  
( 0 , .  . . , O ,  -1, 0 ,  . . . , O), and ( 0 , .  . . , O), where *1 stands on the a t h  place. 
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Next we introduce the scalars with respect to O ( n )  which can be built from the 
ziS variables, 

Since the O ( n )  generators do not act on the td(d + 1) functions w,,, i t  is interesting 
to go to a new set of variables including the wl,’s because the O ( n )  generators will 
contain no derivatives with respect to them. In this way, it is possible to reduce the 
number of variables in (2.11). Let us therefore eliminate i d ( d  + 1) variables of the 
b,, type-being of low weight, they are likely to play no part in the Hws-and replace 
them by the w,,’s. The new variables are defined by 

U,, = a,,, a = 1, .  , . , v, 
p = 1, . , . , v - i, U,, = b,,, 

= c,, p = v - i + l  (only when n = 2v  + l), ( 3 . 3 )  
Y 

w,, = c + a,,bIa 1, when n = 2v, 
a = l  

Y 

= (ad,, + alobla 1 + c,c,, when n = 2v  + 1, 

where i and j run from 1 to d. It can be easily checked that the Jacobian of the 
transformation is different from zero so that the variables U,,, U,,, and w,, are func- 
tionally independent. 

In terms of the variables U,,, U,,, and w,,, the weight and raising generators of O ( n )  
become 

a = l  

a d a mrniv-a ,di  

Ha = ula-- c U I U a v , , ’  
I = l  au,, 1 = l  

where b,, is a function of the new variables, that could be obtained in principle by 
inverting (3 .3 ) .  

Let us now look for the solutions P(u,,, U,,, w,) of (2.11). Since the change of 
variables (3 .3 )  is not linear, the functions P(u,,, uIp, w,,) could be non-analytic in uIa, 
uIp and w,,, while remaining polynomials in zIs. We shall disregard here this possibility 
because, as shown in the next section, the analytic solutions provide us with the HWS 
of all the equivalent O ( n )  irreps contained in a given U(n)  irrep in accordance with 
Littlewood’s rule. 

Equations (2 .11b)  and (2.114 (the latter for n = 2v  + 1) only contain derivatives 
with respect to the utp variables. As shown in the appendix, they impose that P does 
not depend upon the latter. We are thus left with functions P(ula, wc,). 
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Taking (3.4) into account, the remaining equations (2.1 la ,c)  become 

and 

When acting upon functions P(uiu, wij), the operators H, and DE therefore respectively 
behave as the weight and raising generators of a U(Y)  group, whose generator general 
form is uiU a/auip, a, p = 1 , .  . . , Y. Equation (3.5) means that P(ui,, wij) is the 
HWS of an irrep [ A l A 2 .  . . A d ]  of this U(v) group. 

From the results of Moshinsky (1963), it is easy to construct particular solutions 
of (3.5), which only depend upon the uiu variables. They are given by 

P ( U i u )  ( K 1 1 ) A 1 - A 2 ( U 1 2 , 1 2 ) A 2 - A ~  . . (U 12 ... d-1.12 . . .  d - 1 )  

d 

A d  - 1  - A d  

(3.6) 
uil u l i . 1 2  12 ... d-2d.12 ... d - 1  

u i i  u12 .12  12 ... d-1,12 ... d - 1  
x ( ~ 1 2 . . . d . 1 2 , . . d ) A ‘ ~ ( - , -  , . . . ,  

In (3.6), u 1 2  1-1,.12 l s i s j s d ,  isdefined by 

where the summation is carried out over the i! permutations of the indices 1 ,2 ,  . . . , i - 
1, i ,  a n d 2  is an arbitrary polynomial in the variables indicated, subject to the condition 
that when multiplied by the other factors in (3.6), it should still be a polynomial in 
the ui,’s. The number of linearly independent functions P ( u i u )  is equal to the dimension 
of the irrep [ A l  , , . A d ]  of U(d). The general analytic solution of (2.11) is obtained by 
linearly combining these functions P(ui,) with coefficients P s  ( wii) which are arbitrary 
analytic functions of the wii variables. 

4. Highest weight states of equivalent O(n) irreps belonging to a given U(n) irrep 

To obtain the highest weight states of both O ( n )  and U(d)  irreps, it remains to impose 
the conditions (2.12) on the linear combination of functions P(u iu)Ps  (wij). When acting 
upon such functions, the U(d) generators (2.7) reduce to the expression 

where we have carried out the changes of variables (3.1) and (3.3). On the right-hand 
side, the first term operates on P(uiu) ,  whereas the second one acts on Ps(wij) .  

As mentioned above, the polynomials P(ui,) corresponding to all possible indepen- 
dent choices for Z span the representation space of an irrep [ A l  . . . A d ]  of U@). It 
is possible to choose 2 in such a way that the polynomials p(uiu) transform irreducibly 
under the canonical chain U(d) 3 U(d - 1) 2. . . = U(1), and are characterised by a 
Gel’fand pattern ( A )  (Gel’fand and Tseitlin 1950). Then they can be written in analogy 
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( n / 2 . .  . n/2) [h;  . . . h i ]  d 

9 (4.4) i h : - h : + ,  ) / 2  
=Ah; h i  n ( w i z  !,iz 

1 = 1  
[ A ; .  . . h i ]  ; 

max max 

with (2.9) as 

where no additional label of the (r’) type is needed. 
Since the functions Ps (wI i )  depend upon scalar variables under O(n),  they transform 

according to the irrep (0) of O ( n ) ,  and span the representation space of an irrep 
(n/2 , . , n/2) of Sp(2d, R). In a recent work (Deenen and Quesne 1982), we showed 
that the latter breaks into a direct sum of irreps [ h ;  . . . h i ]  of U(d), where h i , .  . . , h i  
are even and each irrep has a multiplicity one. We can therefore specify the indepen- 
dent analytic functions Ps(w,,) by the partition [ h i  . , , h i ]  and the Gel’fand pattern 
(h’)  so that 

where w ~ ~ . . . ~ , ~ ~ . . . ,  is defined in terms of wkl by an expression similar to (3.7), A h ; . . . h d  

is some normalisation coefficient, and hi+l = 0. Therefore, by applying appropriate 
U ( d )  lowering operators (Nagel and Moshinsky 1965) to this HWS, we can actually 
construct the right-hand side of (4.3). 

From (4.2) and (4.3), the solutions of (2.12a, b )  are now obtained in a straightfor- 
ward way: we only have to couple P(ui,) and P s ( w i j )  to a definite irrep [h l  . . . h d ]  of 
U ( d )  by means of appropriate U ( d )  Wigner coefficients. The result can be written as 

(4.5) 

where we use Biedenharn’s notations for the U(d) Wigner coefficient (Biedenharn et 
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a1 1967). The operator pattern ( y ’ )  solves the state labelling problem for the product 
[ A l  . , . A d ] x  [ h f  . . . h i ]  of U(d) irreps. Together with the partition [ h i . .  . hi], it can 
serve to distinguish between equivalent irreps of U(d) [O(n)]  contained in a given 
irrep of Sp(2d, R )  [U(n)]. In other words (r’) can be taken as 

This definition of (r’) indeed provides us with the right number d(d - 1)/2 of additional 
independent labels since the r:, are linked by the relations 

I i - 1  

j - 1  j = l  
qi- r;i-l = h i  - h i ,  i = l ,  . . . ,  d. (4.7) 

Moreover the states corresponding to different (r’) patterns are linearly independent 
by construction. 

We have therefore proved: that the internal state labelling problem for the d-row 
irreps of U(n)  (where 2d s n), when reduced with respect to O ( n ) ,  amounts to the 
external state labelling problem for U(d),  for which a canonical solution is known 
(Biedenharn er a1 1967). This new solution of the state labelling problem for U(n)  =) 

O ( n ) - o r  for SU(n) ISO(n)-may also be termed canonical since it reflects the 
operation of Littlewood’s branching rule in a straightforward way, as can be seen by 
comparing (2.3) and (4.5). 

Since the set of labels (r’) are integer, we should expect according to Racah (1964) 
that the corresponding bases are not orthogonal. Although two states (4.5) correspond- 
ing to the same irrep [ h i . ,  . h i ]  but to different patterns ( y ’ )  are orthogonal, this is 
not true in general for two states associated with different irreps [ h f  . .  . hi]. We 
indeed note that in (4.5) both P(uicl)  and P ’ ( w i j )  are classified according to the same 
U(d) group. Had they belonged to given irreps of two commuting U(d) groups, 
orthogonality with respect to [hf  . . . h i ]  would have resulted. 

5. Conclusion 

In the present paper, we have taken advantage of the complementarity relationship 
between the chains U(n)  3 O ( n )  and Sp(2d, R) 3 U(d) for d-row irreps of U(n)  to 
propose a new solution of the state labelling problem for U(n) I O ( n )  or SU(n) 2 

SO(n). This solution is not restricted to small values of n or d (provided that 2d s n), 
although its practical usefulness is of course limited by the need for an explicit 
knowledge of the U(d) Wigner coefficients. 

Since it is directly connected with Littlewood’s branching rule for U(n)  3 O ( n ) ,  it 
should be intimately related to the method of elementary permissible diagrams. In 
forthcoming papers, we plan to study this point as well as to extend the present analysis 
to irreps of U(n)  for which 2d > n .  

The same kind of approach as that developed here could be used to solve the state 
labelling problem for the chain U(2v) 2 Sp(2v), for which both a Littlewood’s branch- 
ing rule (1943) and a chain of complementary groups (Quesne 1973) are known. 

+ In the case d = 3 ,  a similar result was obtained by Vasilevskii er ai (1980) using a different approach 
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Appendix. Solutions of (2.11b) and (2.11d) 

In the present appendix, we wish to show that the solutions P(u~,,  vip, wi,) of (2.11b) 
and (2.11d) are those functions which only depend upon the uia and wii variables. 

Let us first consider the set of equations (2.11b). In the variables uia, uip and wijr 
they can be written as 

P = 0 ,  p <CY. ( A l )  
min(v-p,dl  a miniu-a .d )  

A f P = (  U,,-- 
, = 1  

For any p value between 1 and v - 1, there are v - p  equations corresponding to 
a = p + 1, . . . , v. Let us arrange the /3 values in decreasing order, starting from 
/3 = v - 1. For this value, there is a single equation 

which imposes that P does not depend upon U ~ , ~ - I .  Let us show by induction over 
p that the equations corresponding to p = v - 1, v - 2, . . . , Po impose that P does not 
depend upon uIp, i = 1, .  . . , min(v -p ,  d) ,  p = v - 1 , .  . . , Po. If the latter is true for 
p = v - 1, v - 2, . , . , Po + 1, when considering p = Po, we have to solve v - P o  additional 
linear equations 

in v - P o  or d unknowns aP/duIp, according to which one is the smallest. Since the 
matrix of the coefficients coincides with that of the U , ,  variables for which i = 
1, . . . , min(v -Po ,  d ) ,  and CY = P o +  1, . . . , v, its rank is equal to the number of 
unknowns and the latter are therefore equal to zero. This completes the proof of the 
proposition. It then follows that the whole set of equations (2.116) imposes that P 
does not depend upon U,,, where i = 1, . . . , min(v - p ,  d) ,  and p = 1, . . . , v - 1. 

In the case where n = 2v, we have therefore succeeded in eliminating all the U,, 
variables. In the cases where n = 2 v + l ,  we are left with the variables u , , , - ,+~ ,  
i = 1, . . . , d, but we have still to consider the set of equations (2.11d), which can be 
written as 

d aP 
E:P= U,,------ - 0,  CY = 1 , .  . . , v. (A4) 

This is a system of v linear equations in the d (sv) unknowns dP/dv , , , - ,+ l .  Since the 
matrix of the coefficients is of rank d, the unknowns are equal to zero, so that P does 
not depend upon U ,  ,”-, + I ,  i = 1, . . . , d, either. 
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